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ASSIGNING READ REQUESTS BASED ON
BUSYNESS OF DEVICES

FIELD OF THE INVENTION

The present invention relates to load balancing and, more
specifically, to assigning read requests to devices based on
busyness measures.

BACKGROUND

Storage devices are used to store various types of digital
items, such as documents, images, database objects, data
extents, data files, audio files, video files, etc. To ensure that
valuable items are not permanently lost, it is common for
items to be mirrored across multiple storage devices. For
example, assume that a system includes five storage devices
that are used to store five items. Rather than store each of the
five items on a single one of the five disks, copies of each of
the items may be stored on two different disks within the
system. Because, for each item, copies are stored on two
different disks, the failure of any one disk will not cause any
item to be lost.

Storage devices, no matter how large and fast, have finite
1/0 processing capabilities. If too many read requests are
issued to any particular storage device, the performance of the
system suffers. Consequently, techniques have been devel-
oped to balance the load of read requests that target any
particular item among the storage devices that store copies of
the item. For example, if disks A and B store copies of an item
X, then half of the read requests that target item X may be
issued to disk A, and the other half of the read requests that
target item X may be issued to disk B. To accomplish this
distribution, the storage system may simply alternate read
requests for item X between the two disks, or divide item X
into two logical volumes, where read requests that map to one
of'the volumes are issued to disk A, and read requests that map
to the other volume are issued to disk B.

Systems that evenly balance read requests that target a
particular item between the storage devices that have copies
of the item work well as long as the items are evenly spread
among the storage devices in the system, each item receives
approximately the same number of read requests, and no
device fails. However, various circumstances may lead to
situations in which items are not spread evenly and/or differ-
ent items receive vastly different numbers of 1/O requests.

For example, it is not uncommon for some items to become
“hot spots” to which read requests are issued at a much higher
frequency than other items. Depending on the nature of the
data that is stored on the storage devices, such hot spots may
correspond, for example, to an important just-released news
story, a popular song, or hot stock prices stored in a database.
Regardless of the cause of hot spots, unless the hot spots are
distributed evenly among the storage devices, some storage
devices may become overloaded while others are underuti-
lized.

One way of mitigating the detrimental effect of hot spots is
to move copies of items that have hot spots to storage devices
that are otherwise underutilized. This may work well if hot-
spots were constant and predictable, but items that may be
highly accessed at one point of time may be rarely accessed at
other times. Consequently, moving copies of items among
storage devices to mitigate hot spots may cause more perfor-
mance problems than are caused by the hot spots themselves.

Situations that skew the distribution of items among a set of
storage devices are also common. For example, assume that
two copies each of five items are distributed evenly among
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five storage devices, as shown in system 100 of FIG. 1. If the
five items (A-E) are accessed at the same rate, and the read
requests for each item are divided equally among the copies
of the item, then the workload on each storage device (102-
110) will be approximately the same. However, if one of those
devices fails, all of the /O requests that would have been
handled by that failed device will have to be handled by the
two devices that have copies of the items that were on the
failed device. This causes those two devices to be overloaded,
while the other two storage devices continue to receive the
same number of read requests they received prior to the fail-
ure.

Specifically, assume that storage device 102 fails. After the
failure, all of the read requests for item A will be sent to
storage device 104, and all of the read requests for item E will
be sent to storage device 110. The I/0 load of storage devices
106 and 108 would not be affected. Assuming that all five
items are being accessed at the same rate (e.g. 100 reads per
second), the I/O load for each of storage devices 104 and 110
will be 50% higher (150 reads per second) than the I/O load
for each of storage devices 106 and 108 (100 reads per sec-
ond).

One way to reduce the workload skew that results when a
storage device fails is to ensure that the items on any given
storage device are mirrored, randomly or otherwise, across a
large number of other storage devices. Consequently, when
the storage device fails, the extra read load that will be
incurred by other devices when the device fails will not be too
significant for any one storage device. However, the overhead
incurred by creating and managing relatively fine-granularity
items that are mirrored across large numbers of storage
devices reduces any benefit achieved by the improved post-
failure workload distribution. In addition, spreading the mir-
ror copies randomly over a large number of storage devices
makes the system (a set of devices) more prone to loss of
availability of data in the event of multiple failures.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1 is a block diagram of a system in which five storage
devices store five items, each of which has a copy on two of
the five storage devices; and

FIG. 2 is ablock diagram of a computer system upon which
embodiments of the invention may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

General Overview

Techniques are described herein for assigning read
requests to storage devices in a manner that reduces the like-
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lihood that any storage device will become overloaded or
underutilized. In particular, techniques are provided in which
a read-request handler assigns read requests that are directed
to each particular item among the storage devices that have
copies of the item based on how busy each of those storage
devices is. Consequently, even though storage devices 102
and 104 may have copies of the same item A, there may be
times during which storage device 102 is assigned a dispro-
portionate number of the reads of item A because storage
device 104 is busy with read requests for other items, and
there may be other times during which storage device 104 is
assigned a disproportionate number of the reads of item A
because storage device 102 is busy with read request for other
items.

The busyness of a storage device may be estimated in
various ways. Various techniques for estimating the busyness
of storage devices shall be described hereafter, including
fraction-based estimates, interval-based estimates, and the
response-time-based estimates. However, the techniques
described herein are not limited to any particular mechanism
for estimating the busyness of a storage device.

Because read requests are assigned to storage devices
based on the relative busyness of the devices that have the
items that are targeted by the read requests, the failure of a
storage device can have a cascading affect that increases the
load both of devices that are mirroring items of the failed
device (“partner devices™), and devices that are not mirroring
items of the failed device (“non-partner devices”). For
example, failure of device 102 will cause the read requests
received by partner devices 104 and 110 to increase. The
increase in read requests experienced by devices 104 and 110
will initially cause devices 104 and 110 to be busier than
devices 106 and 108. Because device 104 is busier than device
106, read requests for item B will begin to be assigned dis-
proportionately to device 106. Similarly, because device 110
is busier than device 108, read requests for item D will be
assigned disproportionately to device 108. Eventually, sys-
tem 100 will achieve a state of relative equilibrium in which
all devices are equally busy, even though the partner devices
for any given item are not handling an equal number of read
requests for that item. For example, each of devices 102 to
110 may end up with 125 reads-per-second, as follows:

Device 104: 100 reads-per-second of item A, 25 reads-per-
second of item B

Device 106: 75 reads-per-second of item B, 50 reads-per-
second of item C

Device 108: 50 reads-per-second of item C, 75 reads-per-
second of item D

Device 110: 25 reads-per-second of item D, 100 reads-per-
second of item E

Fraction-Based Busyness Estimates

According to one embodiment, when a storage device fails,
the mechanism responsible for directing read requests to stor-
age devices (referred to herein as a read-request handler)
determines the fraction by which the failure should increase
the read request load of each remaining device. That new load
is the “target increase”. Once the target increase is deter-
mined, the read-request handler determines what fraction of
the read requests each device should receive, for each item
stored on the device, in order for the device to achieve the
target increase. According to one embodiment, a percentage-
revision operation is initiated starting with the partner devices
of the failed device.

For example, assume that device 102 in system 100 fails.
Because system 100 had five storage devices before the fail-
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ure, and will have four storage devices after the failure, the
target increase is 25%. That is, the number of read requests
that each of the remaining devices handles after the failure of
device 102 should increase by 25%.

In the present example, the partner devices of the failed
device 102 are devices 104 and 110. Therefore, in one
embodiment, the read-request handler begins percentage-re-
vision operations at devices 104 and 110. In the percentage-
revision operation started at device 104, the read-request
handler determines that for device 104 the read request per-
centage for item A will increase from 50% to 100% because,
with device 102 gone, device 104 has the only copy of item A.
If the read-request handler makes no other changes to the
percentages applicable to the items on device 104, the total
read load on device 104 will increase by 50%.

A 50% increase in load is higher than the 25% target
increase, so additional adjustments must be made. Specifi-
cally, to achieve the 25% target increase on device 104, the
percentage of reads of other items stored on device 104 needs
to be reduced. Specifically, to achieve the 25% target
increase, the read-request handler has to reduce the percent-
age of read requests device 104 handles for item B by 50%.
Thus, the read requests of item B handled by device 104 is
reduced from 50% to 25%.

Reducing the percentage of read requests of item B
handled by device 104 to 25% means that the percentage of
read requests of item B handled by device 106 must increase
to 75%. Increasing the read requests of item B handled by
device 106 to 75% results in an overall increase for device 106
of 25%. Since 25% is the target increase, the read-request
handler does not need to make any further adjustments to the
percentage of reads for the other items stored on device 106.
Specifically, 50% of the read requests for item C may con-
tinue to be sent to device 106.

In the percentage-revision operation started at device 110,
the read-request handler determines that for device 110 the
read request percentage for item E will increase from 50% to
100% because, with device 102 gone, device 110 has the only
copy of item E. If the read-request handler makes no other
changes to the percentages applicable to the items on device
110, the total read load on device 110 will increase by 50%.

A 50% increase in load is higher than the 25% target
increase, so additional adjustments must be made. Specifi-
cally, to achieve the 25% target increase on device 110, the
percentage of reads of other items stored on device 110 needs
to be reduced. Specifically, to achieve the 25% target
increase, the read-request handler has to reduce the percent-
age of read requests device 110 handles for item D by 50%.
Thus, the read requests of item D handled by device 110 is
reduced from 50% to 25%.

Reducing the percentage of read requests of item D
handled by device 110 to 25% means that the percentage of
read requests of item D handled by device 108 must increase
to 75%. Increasing the read requests of item B handled by
device 108 to 75% results in an overall increase for device 108
of 25%. Since 25% is the target increase, the read-request
handler does not need to make any further adjustments to the
percentage of reads for the other items stored on device 108.
Specifically, 50% of the read requests for item C may con-
tinue to be sent to device 108.

As illustrated in the above-example, the percentage of read
requests that each device will receive for each item the device
is storing is propagated in a chain-like manner, starting with
the partners of the failed node, to achieve the target increase
across all devices. Once the percentages have been calcu-
lated, the read-request handler assigns read requests to the
devices based on the percentages. Specifically, the read-re-
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quest handler will send 100% of the read requests for item A
to device 104, 25% of the read requests for item B to device
104, 75% of the read requests for item B to device 106, 50%
of the read requests for item C to device 106, etc.

Estimating Busyness of Devices Using Intervals

To avoid the need to recalculate per-item-per-device per-
centages in response to changes in system 100 (which may
involve a significant amount of overhead in large systems
where each item is mirrored across several devices), the busy-
ness of devices may be estimated by monitoring how fre-
quently read requests are issued to each storage device.
According to one embodiment, the degree of busyness that is
produced by read requests is measured in terms of “intervals”,
where the interval of a given storage device is calculated
when the read-request handler sends a read-request to the
given storage device, and is based on the number of read
requests received by the read-request handler since the pre-
vious read request that was sent to that given storage device.

For example, if the read-request handler sends a read
request to device 102, then sends four read requests to other
devices, and then sends another read request to device 102,
the interval for device 102 is five. Note that interval is deter-
mined on a per-device basis, rather than a per-item basis.
Thus, the interval for device 102 would be five regardless of
whether the two read requests that were set to device 102 were
directed to the same item, or to different items.

The interval of a device varies inversely with the percent-
age of read requests the read-request handler sends to the
device. For example, if 50% of the read requests received by
a read-request handler are sent to device 102, the interval for
device 102 will be two. On the other hand, if only one out of
every hundred read request is sent to device 102, then the
interval for device 102 would be 100.

A device with a lower interval than another device is
receiving read requests more frequently than the other device,
and therefore can be presumed to be busier than the other
device. Therefore, according to one embodiment, the read-
request handler responds to each read request by (a) deter-
mining which devices have copies of the item to which the
read request is directed (the “candidate set of devices™), and
(b) sending the read request to the device, within the candi-
date set, that has the highest interval.

Smoothed Intervals

An interval provides a single data point for determining
how busy a device is. However, single data points frequently
do not accurately portray the actual condition of the system.
For example, an otherwise underutilized device may be
issued two read requests in rapid succession. The interval
between those requests may be small, indicating that the
device is very busy so subsequent read requests for items on
the device should be directed to other devices with those
items. Conversely, a heavily accessed device may experience
a short respite that results in a long interval. Due to the long
interval, the next read request that can be handled by the busy
device will be directed to the busy device, even though other
devices with the same items are generally less busy.

To obtain a more accurate measure of the general busyness
of a device, smoothed (i.e. averaged) interval may be used.
For example, a new smoothed interval for each device may be
calculated, when the device is sent a read request, using the
following formula: NSI=(k*PST)+((1-k)*CI), where NSI is
the new smoothed interval, PSI is the previous smoothed
interval, CI is the current interval, and k is a coefficient that
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determines the relative weight given to (a) the previous
smoothed interval, and (b) the current interval.

In an embodiment that uses the smoothing formula speci-
fied above, the higher the value ofk, the more weight is given
to how busy a device has been in the past (as indicated by the
PSI). Consequently, a high k value will cause a more gradual
change in the allocation of read request assignments when a
significant change occurs in system 100 (e.g. when a device
fails). However, once a steady state is achieved after a signifi-
cant change, the high value of k ensures that little fluctuation
will occur in the allocation of read request assignments.

For example, assume that k is 0.9 and that the PSI for each
of the devices in system 100 is 5 (indicating that the read
request allocation is substantially balanced among the five
devices). If device 102 then fails, the CI for devices 104 and
110 will begin to rise, because they will begin to receive read
requests that would have been sent to device 102. Assuming
that the new interval at which devices 104 and 110 begin to
receiveread requests is 3, rather than 5, their NSI after the first
post-failure interval will be (0.9%5)+(0.1%*3)=4.8. After the
second post-failure interval, their NSI will be
(0.9%4.8)+(0.1*3)=4.62. The slow rate at which NSI is con-
verging on the CI of 3 means that many intervals will be
required before the NSIs of devices 104 and 110 accurately
reflect the post-failure level of busyness of devices 104 and
110.

On the other hand, a low k value will cause a faster change
in the allocation of read request assignments after a signifi-
cant change, but will result in more fluctuation during a steady
state. For example, assume thatkis 0.1 and that the pre-failure
PSIforeach ofthe devices in system 100 is 5. Assuming again
that the post-failure interval at which devices 104 and 110
begin to receive read requests is 3, rather than 5, their NSI
after the first post-failure interval will be (0.1*5)+(0.9%*3)
=3.2. After the second post-failure interval, their NSI will be
(0.1¥3.2)+(0.9%3)=3.02. The fast rate at which NSI is con-
verging on the CI of 3 means that few intervals are required
before the NSIs of devices 104 and 110 accurately reflect the
post-failure level of busyness of devices 104 and 110.

The formula specified above for generating a smoothed
interval for each device is merely one way of smoothing the
interval values used by the read-request handler to determine
where to direct read requests. However, the techniques
described herein are not limited to any particular formula. For
example, smoothed interval values may be obtained by aver-
aging the most recent 10 intervals of each device. Smoothed
interval values may also be obtained by taking a weighted
average of the last 100 intervals of a device, where more
recent intervals are given more weight than long-past inter-
vals.

A read-request handler that assigns read requests to devices
based on smoothed interval values operates similar to a read-
request handler that assigns read requests based on intervals,
as described above. Specifically, the read-request handler
responds to each read request by (a) determining the candi-
date set of devices, and (b) sending the read request to the
device, within the candidate set, that has the highest smoothed
interval.

Estimating Busyness of Devices Using Response
Time

As used herein, response time generally refers to how
quickly a device handles a read request. In general, the busier
a device is, the slower its response time will be. Therefore, a
read-request handler can use the response time of a device as
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a measure of the busyness of the device, instead of or in
addition to using intervals as a measure of busyness.

Just as a single interval may not accurately reflect the actual
busyness of a device, the response time associated with a
single read request may not accurately indicate the actual
busyness of a device. Therefore, response time values may be
smoothed in a manner similar to interval values.

A read-request handler that assigns read requests to devices
based on smoothed response time values operates similar to a
read-request handler that assigns read requests based on
smoothed interval values, as described above. Specifically,
the read-request handler responds to each read request by (a)
determining the candidate set of devices, and (b) sending the
read request to the device, within the candidate set, that has
the fastest smoothed response time value.

A read-request handler that assigns read requests to devices
based on both smoothed response time values and smoothed
interval values would generate a busyness score for which
both response time and interval are factors. Such a read-
request handler would respond to each read request by (a)
determining the candidate set of devices, and (b) sending the
read request to the device, within the candidate set, that has
the lowest busyness score.

Device Handicaps

If all of the storage devices in a storage system are identi-
cal, and all the items stored thereon are of identical impor-
tance, then it would be desirable to assign the same amount of
read requests to each of the storage devices. Specifically, it
would be desirable for all storage devices to have the same
interval or response time. However, it is not always desirable
to equalize the read requests between storage devices. For
example, if one storage device is significantly smaller and/or
slower than the others, it would be better to send fewer read
requests to that device than to the others. As another example,
a pair of storage devices may hold copies of an item that must
be accessed more quickly than other items. To ensure fast
retrieval of the important item, it may be desirable to keep that
pair of storage devices less busy than other storage devices.
These are merely examples of the many possible reasons one
may have to distribute the read request load unevenly among
the storage devices in a system.

According to one embodiment, uneven distribution during
steady-state operation is achieved by determining a handicap
value for each storage device. The handicap associated with a
device may be specified by the manufacture of the device,
specified by an administrator, or be derived automatically
based on the characteristics of the device, or metrics obtained
by monitoring the device during usage. The techniques
described herein are not limited to any particular way of
determining the handicaps for devices.

In one embodiment, before comparing the busyness mea-
sures associated of the candidate devices with each other, the
read-request handler adjusts each device’s busyness measure
by the device’s handicap to produce a handicap-adjusted
busyness measure. The adjustment may be made by multi-
plying the non-handicapped busyness measure by a handicap
weight, or by adding a handicap factor to the non-handi-
capped busyness measure. The read-request handler then
compares the handicap-adjusted busyness measures to each
other, and sends the read request to the device, among the
candidate set of devices, that has the lowest handicap-ad-
justed busyness measure.

For example, assume that device 102 has a handicap of 1,
while device 104 has a handicap of 1.2 (indicating that, ide-
ally, device 104 should receive 20% more read requests than

10

15

20

25

30

35

40

45

50

55

60

65

8

device 102). Assume also that, at the time the read-request
handler receives a read request directed to item A, the
smoothed interval of device 102 is 5, while the smoothed
interval of device 104 is 4.7. In the absence of any handicap,
the read-request handler would send the read request to
device 102, because device 102 has the higher smoothed
interval. However, applying the handicaps produces a handi-
cap-adjusted smoothed interval of (5%1)=5 for device 102,
and a handicap-adjusted busyness measure of (4.7%1.2)=5.64
for device 104. Based on the handicap-adjusted busyness
measures, the read-request handler would send the read
request that targets item A to device 104, rather than device
102.

Accounting for Size Differences in Read Requests

In many storage systems, read requests may be for variable
amounts of data. For example, one read request may request
only 8K (8 Kilobytes) of data, while another read request may
request 2M (2 Megabytes) of data. In general, the larger the
amount of data requested, the greater the amount of work
required by the device that provides the data. Consequently, if
all read requests are counted equal, intervals may not accu-
rately reflect the actual busyness of devices.

For example, assume that each device in system 100
received one fifth of the read requests. If all read requests
were counted the same, then all five ofthe devices would have
an interval of five, indicating a perfectly equal workload
across the five devices. However, the reality may be that all of
the read requests sent to device 102 are for 2M of data,
whereas the read requests sent to all other devices are only for
4K of data. Under these circumstances, device 102 would be
significantly busier than the other devices, but that disparity in
busyness would not be reflected in the intervals of the devices.

To account for the differences in work required by read
requests for different amounts of data, when computing the
interval of a device, larger read requests may be given more
weight than smaller read requests. For example, a read
request for amounts up to 8K may be considered 1, read
requests from 8K to 1M may be considered 1.2, and requests
over 1M may be considered 1.5.

In adjusting the interval value based on read request sizes,
the adjustment to the interval of a device may be based on the
size of the read requests to other devices, the size of the read
requests to the device itself, or both. For example, in an
embodiment that adjusts the interval of a device based on the
size of read requests to other devices, the current interval (CI)
of'a device may be the sum of the weighted values of the read
requests that occurred between the most recent consecutive
read requests that were sent to that device.

For example, assume that after device 102 receives a first
read request, four read requests are sent to other devices, and
then device 102 receives a second read request. Assume fur-
ther that the four intervening read request were for amounts of
4K, 4K, 4K, and 2K. Under these circumstances, the current
interval for device 102 would be 1+1+1+1=4. On the other
hand, if between the first and second read requests, other
devices receive read requests for amounts of 2M, 800K, 4K,
and 5M, the current interval for device 102 would be 1.5+
1.2+1+41.5=5.2.

Inan embodiment that adjusts the interval ofa device based
on the size of read requests to the device itself, intervals that
end with a large read request may be adjusted down, while
intervals that end with a small read request may be adjusted
up. For example, assume that after device 102 receives a first
read request, four read requests are sent to other devices, and
then device 102 receives a second read request. Without any
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adjustment, the current interval for device 102 would be 5.
However, if the second read request is for less than 4K, the
interval may be increased be 0.2 to 5.2. On the other hand, if
the second read request is for more than 1M, the interval may
be decreased by 0.5 to 4.5.

These are merely examples of the various ways the current
interval of a device may be increased or decreased to account
for the sizes of read requests that the device receives and/or
the sizes of read requests that other devices receive. The
amount of the adjustments may be based on a formula, or
simply obtained from a look-up table. The amount of the
adjustments may also vary from device to device. For
example, some devices may handle large read operations
more easily than others, so the current interval of those
devices would be decreased less when the device receives a
large read request than would the current interval of the other
device.

Reinitializing the Busyness Values in Response to a
Change

After a significant change within a storage system, such as
the failure of a device, it may take a significant amount of time
before smoothed busyness measures accurately reflect the
new reality in the system. For example, assume that all
devices in system 100 initially have smoothed intervals of 5.
Atthatpoint, if device 102 fails, the current interval of devices
104 and 110 may immediately drop to 3 (indicating that
devices 102 and 104 are being overworked), but the smoothed
interval of devices 104 and 110 would only gradually begin to
drop from 5. As the smoothed interval of devices 104 and 110
gradually drops, the smoothed interval of devices 106 and 108
would gradually rise. Ideally, system 100 will eventually
reach an equilibrium in which the smoothed intervals of each
of the surviving devices 104, 106, 108 and 110 would be 4.
However, during the time it takes for the smoothed intervals to
achieve the equilibrium, devices 104 and 110 will be over-
loaded while devices 106 and 108 are underutilized.

According to an embodiment, the process of reaching a
new equilibrium is accelerated by reinitializing the smoothed
interval values in response to the occurrence of a significant
change. For example, when it is detected that device 102 has
failed, the read-request handler determines a seed interval
value for each of devices 104-110. In one embodiment, the
seed interval value for a device is the smoothed interval value
the device is expected to have when the system 100 reaches
equilibrium after the change. In the present example, the
read-request handler would expect the smoothed intervals of
devices 104-110 to converge to 4 after the failure of device
102. Rather than wait for the smoothed intervals to converge
to 4, the read-request handler reinitializes the smoothed inter-
vals of each of the devices to 4.

As another example, if device 102 comes back online, the
read-request handler would again reinitialize the smoothed
interval values of all devices 102-110 to five, even though at
the time device 102 comes online, device 102 does not actu-
ally have a valid interval value, and the smoothed interval
values of devices 104-110 would probably be lower than 5.

Similar seeding can be done when other types of busyness
measures are used. For example, in a system that uses
response time as a busyness measure, when a device fails, the
smoothed response time values of all surviving devices may
be reset to a seed value that is slower than their actual
smoothed response time value (because the burden on the
surviving devices is expected to increase). Conversely, when
a new device comes online, the smoothed response time val-
ues of all devices (including the newly added device), may be
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reset to a seed value that reflects how the response time of the
devices is expected to change.

Adjusting K in Response to a Change

As previously illustrated, a high value for k (e.g. 0.9) gives
more weight to the past average busyness value, and causes
the smoothed busyness value to change gradually. In contrast,
a low value for k (e.g. 0.1) gives more weight to the most
recent busyness measurement, and causes the smoothed
busyness value to change rapidly. Therefore, according to one
embodiment, instead of or in addition to seeding the
smoothed busyness values after a change, the value of k used
in the smoothing formula may be reduced after a change to
give more weight to new busyness measures.

For example, in response to a significant change in system
100 (such as failure of a device, or addition of a device), k may
be changed from 0.9 to 0.1. Because of this change, the
smoothed busyness measures will quickly converge on what
should approximate the new equilibrium of system 100. After
a certain amount of time, or a certain number or read requests,
the value ofk can be changed back to 0.9, to avoid significant
fluctuation while in a relatively steady-state situation.

In one embodiment, the value of k gradually returns to its
steady-state value after a change. For example, in steady-state
conditions, k may be 0.9. In response to a change, k may be
changed to 0.1. After 100 read requests (or a certain period of
time), k may be increased to 0.2. After another 100 read
requests (or another period of time), k may be increased to
0.3. This process may continue until k has ultimately been
increased back to its steady state value of 0.9.

Recovering after Busy Periods

A smoothed busyness measure only reflects reality up to
the last data point that was used to generate the busyness
measure. [fthe busyness measure of any device becomes stale
due to absence of new data points for the device, the busyness
measures cease to provide an accurate basis for selecting
which candidate devices are to be sent new read requests.

For example, assume that item A receives a sustained burst
of read requests that drive the smoothed intervals of devices
102 to 104 down to 2. Further assume that there is a long
period after the sustained burst in which item A receives no
read requests. Because devices 102 and 104 have such low
smoothed intervals, all read requests for items B and E would
be sent to devices 106 and 110, respectively. Because devices
102 and 104 are not receiving any new read requests, their
smoothed intervals will not be updated with new data points.
Without any new data points, the smoothed intervals will
remain stuck at 2, indicating that devices 102 and 104 con-
tinue to be very busy even though devices 102 and 104 are
now less busy than the other devices.

Similar problems may occur when other busyness mea-
sures are used. For example, in a system that uses response
time for a busyness measure, a device may experience slow
response times for a sustained period, driving the smooth
response time value of the device high above other devices.
Because the smoothed response time value is so high, read
requests that could be handled by the device will be sent to
other devices. Because the device is receiving no new read
requests, the smoothed response time value would remain
high.

Various techniques may be used to “unstick” the busyness
measure of a device after a busy period. For example, in one
embodiment, periodic adjustments are automatically made to
the smoothed busyness measures of devices. Specifically, in a
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system that assigns read requests to devices based on
smoothed intervals may increment the smoothed intervals of
all devices by a certain amount every minute. Eventually, the
smoothed intervals of devices that are not receiving read
requests will rise high enough that they will start to receive
read requests again.

Similarly, in a system that assigns read requests based on
response time, large smooth response time values can be
decremented periodically. Eventually, the large response time
values will decrease to the point where the corresponding
devices start to be assigned read requests again.

Another technique for preventing high busyness values
from being stuck is to implement a policy in which each
device that has a copy of an item receives at least a minimum
percentage of the read requests for the item. For example,
such a policy may require each of the devices in system 100 to
receive a minimum of 5% of the read requests for the items
that they store. In such an embodiment, device 102 would
receive at least one out of every twenty read requests for item
E, even if the smoothed interval for device 102 had been
driven down to 2. Similarly, a device with a slow smoothed
response time would still receive 5% of the read requests for
the items it stores. These read requests add new data points
that will eventually cause the smoothed busyness measures of
no-longer-busy devices to indicate that the devices are no
longer busy.

In yet another embodiment, at the end of a given period of
time, “phantom read requests™ can be applied to all devices
that did not receive any actual read requests during that time
period. Phantom read requests are not actual read requests,
but cause the smoothed busyness measures to be recalculated
as if the device had received a read request. For example, in a
system that uses smooth intervals as the busyness measure, a
particular device with a smoothed interval value of 2 may
have received no read requests during a time period. If fifty
read requests were sent to other devices during that time
period, the smoothed interval of the particular device may be
recalculated using 50 as the current interval value. For
example, if k is 0.9 then the new smoothed interval of the
device would be:

NST=(0.9%2)+((0.1)*50)=(1.8+5)=6.8.

In the context of response time measures, the phantom read
request may be accounted for by adjusting the smoothed
response time of a device as if the device had responded
quickly to a read request. For example, assume that the aver-
age expected response time of a device is 100, and the
smoothed response time of the device is 200. Because of the
high smoothed response time value, the device may receive
no read requests during a particular period. At the end of the
period, the read-request handler may adjust the smoothed
response time value of the device as it the device had exhib-
ited a response time of 50 when responding to the phantom
read request. Using a smoothing formula similar to the one
described above, with a k 0f 0.9, the new smoothed response
time would be: NSL=(0.9*200)+(0.1*50)=(180+5)=185. As
the device receives more phantom read requests, the
smoothed response time of the device will converge on 50
(the presumed response time of the phantom read requests).
Eventually, the smoothed response time of the device will be
sufficiently low that the device will start being assigned actual
read requests.

Client-Side Read-Request Handlers

As mentioned above, a read-request handler uses per-de-
vice busyness measures to determine which device, among
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the candidate set of devices for a particular read request,
should receive the read request. In one embodiment, the
request handler resides in the storage system, and therefore
calculates the busyness measure of adevice based onall of the
read requests that are sent to the storage system to which the
device belongs.

In an alternate embodiment, each client that interacts with
system 100 has its own read-request handler. The busyness
factors calculated by the read-request handlers of each client
are based on the read requests that the client sends to the
system 100, without taking into account the read requests that
other clients are sending to system 100. However, because
each client is spreading its read requests evenly among the
devices in system 100, all read requests received by system
100 tend to be spread evenly among the devices in system
100. Thus, client-based optimization of read request assign-
ments tends to produce a system-wide optimization of read
request assignments.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 2 is a block diagram that illustrates a
computer system 200 upon which an embodiment of the
invention may be implemented. Computer system 200
includes a bus 202 or other communication mechanism for
communicating information, and a hardware processor 204
coupled with bus 202 for processing information. Hardware
processor 204 may be, for example, a general purpose micro-
processor.

Computer system 200 also includes a main memory 206,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 202 for storing information and
instructions to be executed by processor 204. Main memory
206 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 204. Such instructions, when stored
in storage media accessible to processor 204, render com-
puter system 200 into a special-purpose machine that is cus-
tomized to perform the operations specified in the instruc-
tions.

Computer system 200 further includes a read only memory
(ROM) 208 or other static storage device coupled to bus 202
for storing static information and instructions for processor
204. A storage device 210, such as a magnetic disk or optical
disk, is provided and coupled to bus 202 for storing informa-
tion and instructions.

Computer system 200 may be coupled via bus 202 to a
display 212, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 214, includ-
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ing alphanumeric and other keys, is coupled to bus 202 for
communicating information and command selections to pro-
cessor 204. Another type of user input device is cursor control
216, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 204 and for controlling cursor movement
ondisplay 212. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g.,y), that allows the device to specify positions in a plane.

Computer system 200 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 200 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 200 in response to processor
204 executing one or more sequences of one or more instruc-
tions contained in main memory 206. Such instructions may
be read into main memory 206 from another storage medium,
such as storage device 210. Execution of the sequences of
instructions contained in main memory 206 causes processor
204 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “storage media” as used herein refers to any
media that store data and/or instructions that cause a machine
to operation in a specific fashion. Such storage media may
comprise non-volatile media and/or volatile media. Non-
volatile media includes, for example, optical or magnetic
disks, such as storage device 210. Volatile media includes
dynamic memory, such as main memory 206. Common forms
of storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other optical
data storage medium, any physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
202. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 204
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 200 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 202. Bus 202 carries the data to main memory 206,
from which processor 204 retrieves and executes the instruc-
tions. The instructions received by main memory 206 may
optionally be stored on storage device 210 either before or
after execution by processor 204.

Computer system 200 also includes a communication
interface 218 coupled to bus 202. Communication interface
218 provides a two-way data communication coupling to a
network link 220 that is connected to a local network 222. For
example, communication interface 218 may be an integrated
services digital network (ISDN) card, cable modem, satellite
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modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 218 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 218 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 220 typically provides data communication
through one or more networks to other data devices. For
example, network link 220 may provide a connection through
local network 222 to a host computer 224 or to data equip-
ment operated by an Internet Service Provider (ISP) 226. ISP
226 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 228. Local network 222
and Internet 228 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 220 and
through communication interface 218, which carry the digital
data to and from computer system 200, are example forms of
transmission media.

Computer system 200 can send messages and receive data,
including program code, through the network(s), network
link 220 and communication interface 218. In the Internet
example, a server 230 might transmit a requested code for an
application program through Internet 228, ISP 226, local
network 222 and communication interface 218.

The received code may be executed by processor 204 as it
is received, and/or stored in storage device 210, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method comprising:

for each device of a plurality of devices in a storage system,

calculating a respective busyness value;

receiving a read request that targets a particular item for

which copies of the particular item are stored on at least
two devices of the plurality of devices but not all of the
plurality of devices;

in response to receiving the read request, performing the

steps of:

identifying the at least two devices that store copies of
the particular item;

determining which particular device, of the at least two
devices, has a respective busyness value that indicates
that the particular device is less busy than the other
devices of the at least two devices; and

sending the read request to the particular device, ofthe at
least two devices, that has a respective busyness value
that indicates that the particular device is less busy
than the other devices of the at least two devices;

wherein:

the method is performed by one or more computing
devices;

the respective busyness value of said each device is
based, at least in part, on an interval associated with
said each device; and

the interval associated with said each device is based on
an amount of load experienced by other devices of the
plurality of devices between two consecutive read
requests that are sent to each said device.
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2. The method of claim 1 wherein

the interval associated with said each device is based on
how many read requests are sent to other devices of the
plurality of devices between two consecutive read
requests that are sent to said each device.

3. The method of claim 2 wherein the interval associated
with said each device is based, at least in part, on at least one
of: size of read requests sent to other devices of the plurality
of devices, or size of read requests sent to said each device.

4. The method of claim 1 wherein calculating the respec-
tive busyness value for said each device includes calculating
the respective busyness value based, at least in part, on a
response time experienced by said each device when process-
ing a read request.

5. The method of claim 1 wherein the respective busyness
value calculated for said each device is a smoothed busyness
value that is based on a current busyness value for said each
device and one or more past busyness values for said each
device.

6. The method of claim 5 wherein calculating smoothed
busyness value for said each device includes giving a first
weight to the one or more past busyness values when a system
that includes the plurality of devices is in a steady state, and
giving a second weight to the one or more past busyness
values in response to a significant change in the system,
wherein the first weight is greater than the second weight.

7. The method of claim 5 further comprising reinitializing
the respective busyness value of at least one of the plurality of
devices to a seed value in response to a significant change in
a system that includes the plurality of devices.

8. The method of claim 1 further comprising adjusting the
respective busyness value of at least one device of the plural-
ity of devices from a first value to a second value after a period
in which the at least one device has not received any read
requests, wherein the second value indicates that the at least
one device is less busy than is indicated by the first value.

9. The method of claim 1 further comprising adjusting the
respective busyness value of said each device by treating said
each device as if said each device had received a phantom read
request.

10. The method of claim 1 wherein the respective busyness
value of at least one device of the plurality of devices is a
handicapped busyness value generated by adjusting an un-
handicapped busyness value of the at least one device based
on a handicap associated with the at least one device.

11. A non-transitory computer-readable storage that stores
instructions which, when executed by one or more proces-
sors, cause:

foreach device of a plurality of devices in a storage system,

calculating a respective busyness value;

receiving a read request that targets a particular item for

which copies of the particular item are stored on at least
two devices of the plurality of devices but not all of the
plurality of devices;

in response to receiving the read request, performing:

identifying the at least two devices that store copies of
the particular item;

determining which particular device, of the at least two
devices, has a respective busyness value that indicates
that the particular device is less busy than the other
devices of the at least two devices; and

sending the read request to the particular device, of the at
least two devices, that has a respective busyness value
that indicates that the particular device is less busy
than the other devices of the at least two devices;
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wherein:

the non-transitory computer-readable storage is per-
formed by one or more computing devices;

the respective busyness value of said each device is
based, at least in part, on an interval associated with
said each device; and

the interval associated with said each device is based on
an amount of load experienced by other devices of the
plurality of devices between two consecutive read
requests that are sent to said each device.

12. The non-transitory computer-readable storage of claim
11 wherein

the interval associated with said each device is based on

how many read requests are sent to other devices of the
plurality of devices between two consecutive read
requests that are sent to said each device.

13. The non-transitory computer-readable storage of claim
12 wherein the interval associated with said each device is
based, at least in part, on at least one of: size of read requests
sent to other devices of the plurality of devices, or size of read
requests sent to said each device.

14. The non-transitory computer-readable storage of claim
11 wherein calculating the respective busyness value for said
each device includes calculating the respective busyness
value based, at least in part, on a response time experienced by
said each device when processing a read request.

15. The non-transitory computer-readable storage of claim
11 wherein the respective busyness value calculated for said
each device is a smoothed busyness value that is based on a
current busyness value for said each device and one or more
past busyness values for said each device.

16. The non-transitory computer-readable storage of claim
15 wherein calculating a smoothed busyness value for said
each device includes giving a first weight to the one or more
pastbusyness values when a system that includes the plurality
of devices is in a steady state condition, and giving a second
weight to the one or more past busyness values in response to
a significant change in the system, wherein the first weight is
greater than the second weight.

17. The non-transitory computer-readable storage of claim
15 wherein the instructions, when executed by said one or
more processors, further cause reinitializing the respective
busyness value of at least one of the plurality of devices to a
seed value in response to a significant change in a system that
includes the plurality of devices.

18. The non-transitory computer-readable storage of claim
11 wherein the instructions, when executed by said one or
more processors, further cause adjusting the respective busy-
ness value of at least one device of the plurality of devices
from a first value to a second value after a period in which the
atleast one device has notreceived any read requests, wherein
the second value indicates that the at least one device is less
busy than is indicated by the first value.

19. The non-transitory computer-readable storage of claim
11 wherein the instructions, when executed by said one or
more processors, further cause adjusting the respective busy-
ness value of said each device by treating said each device as
if said each device had received a phantom read request.

20. The non-transitory computer-readable storage of claim
11 wherein the respective busyness value of at least one
device of the plurality of devices is a handicapped busyness
value generated by adjusting an un-handicapped busyness
value ofthe at least one device based on a handicap associated
with the at least one device.
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